Direct observation and structural characterization of natural and metal ion-exchanged HEU-type zeolites

Maria Filippousi a,*, Stuart Turner a, Maria Katsikini b, Fani Pinakidou b, Demetris Zamboulis c, Eleni Pavlidou b, Gustaaf Van Tendeloo a

a EMAT, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium

b Solid State Physics Section, Physics Department, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece

c Laboratory of General and Inorganic Chemical Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece

ARTICLE INFO

Article history:
Received 27 February 2014
Received in revised form 16 December 2014
Accepted 26 January 2015
Available online 13 February 2015

Keywords:
HEU-type zeolite
Ion-exchange
Aberration corrected TEM
XRPD
EXAFS

ABSTRACT

The atomic structure of natural HEU-type zeolite and two ion-exchanged variants of the zeolite, Ag⁺ (Ag-HEU) and Zn²⁺ (Zn-HEU) ion exchanged HEU-type zeolites, are investigated using advanced transmission electron microscopy techniques in combination with X-ray powder diffraction and X-ray absorption fine structure measurements. In both ion-exchanged materials, loading of the natural HEU zeolite is confirmed. Using low-voltage, aberration-corrected transmission electron microscopy at low-dose conditions, the local crystal structure of natural HEU-type zeolite is determined and the interaction of the ion-exchanged natural zeolites with the Ag⁺ and Zn²⁺ ions is studied. In the case of Ag-HEU, the presence of Ag⁺ ions and clusters at extra-framework sites as well as Ag nanoparticles has been confirmed. The Ag nanoparticles are preferentially positioned at the zeolite surface. For Zn-HEU, no large Zn(O) nanoparticles are present, instead, the HEU channels are evidenced to be decorated by small Zn(O) clusters.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

HEU-like zeolites are three-dimensional framework structures consisting of (Si,Al)O₄ tetrahedra, in which each oxygen is shared between two neighboring tetrahedra. Substitution of Si⁴⁺ by Al³⁺ results in a deficiency of positive charge in the zeolite framework. The net negative charge produced is usually balanced by cations, mainly Na⁺, K⁺, and Ca²⁺ for natural zeolites, which are situated in the cavities within the structure [1–3]. These extra-framework cations are mobile and can therefore be exchanged by other metal ions. Zeolites are known to have high cation exchange and adsorption capacities; generally, zeolite cation exchange capacities (CEC) are a factor of two to three higher than those of most smectites and vermiculites [4]. Furthermore, as zeolite pores are a natural consequence of the zeolite crystal structure, they possess a constant geometry. This constant geometry combined with their high specific surface area is of interest for applications such as catalysis and molecular sieving (straight and branched hydrocarbons). The cavities and channels in zeolites can also serve as hosts for e.g. metals or metal-oxide clusters or nanoparticles, forming novel composite materials [5]. The wider the zeolite channels, the larger the clusters that can be introduced into the structure.

Natural zeolites have attracted worldwide interest for use in a broad range of applications, even though they may contain more impurities as compared to their synthetic counterparts. Many of these applications are in medicine, as natural zeolites are generally cheaper and less toxic than their synthetic counterparts. Since natural zeolites are abundant in nature, they are easily available and environmentally friendly [6–9]. HEU-type zeolites (clinoptilolite and heulandite; monoclinic crystal structure, space group C2/m, cell parameters a ≈ 17.7, b ≈ 17.9 and c ≈ 7.4 Å [10]) are the most abundant minerals on earth exhibiting a zeolite structure, making them low-cost industrial minerals with several commercial applications [1,11]. According to the Zeolite Subcommittee of the Commission on New Minerals and Mineral Names of the International Mineralogical Association, heulandite is defined as the zeolite mineral which has the framework topology of heulandite and a ratio Si/Al < 4, while clinoptilolite is defined as the series with the same framework topology but with Si/Al > 4 [1]. For clarity, in this
Transmission electron microscopy (TEM) is a valuable technique for the characterization of zeolites [12], as important information such as crystal/defect structure [13,14] and identification of loaded materials like metal or metal-oxide nanoparticles inside the matrix [15,16], can be derived from TEM data. The problem with TEM characterization of natural zeolites is that they generally contain a large amount of water. Degradation of the zeolite structure under electron beam irradiation, caused mainly by radiolysis, occurs very fast and makes it extremely difficult to acquire HRTEM images and consequently perform a full structural characterization based upon these data. Being able to perform stable TEM measurements would be of especially great value in the characterization of modified HEU-type zeolites, ion-exchanged with extra-framework guests like metallic cations or clusters through the use of e.g. ion exchange. In this type of loaded zeolite materials, knowledge on the size, shape and distribution of the constituting ions/clusters/nanoparticles would then be directly accessible by TEM.

In this work, we report the first characterization of the atomic structure of a HEU-type zeolite through use of low voltage aberration corrected TEM. The powdered Na homionic form of the HEU-type zeolite crystals was treated under rehydration conditions [17,18]. The sensitivity of this type of zeolite to the electron beam is in the typical range for natural zeolites and therefore the described measuring procedures for TEM imaging of intact HEU-type zeolites are applicable to many other sensitive, natural zeolites. This will provide a deeper understanding of the structure of the zeolite and the interaction of exchanged ions or clusters with the framework pores. As Diaz & Mayoral [20] reported, there are only few studies which have focused on the observation of guest materials within a zeolite structure through use of low electron dose conditions and short exposure times [19,20]. We will also provide more information on the morphological and structural properties of the HEU-type zeolite after ion exchange with Ag⁺ and Zn²⁺ ions by combining the TEM data with X-ray powder diffraction (XRPD) and X-ray absorption fine structure (XAFS) spectroscopy. The element selective character of the latter allows the determination of the bonding environment of the exchanged ions (in this case for Zn²⁺), irrespective of the crystalline or amorphous character of the host lattice, and has previously already been used for the study of Zn-exchanged zeolites [21,22].

2. Experimental

Pure faintly-white natural HEU-type zeolite crystals and crystals ion-exchanged with Ag⁺ and Zn²⁺ were used in this work. The Zn- and Ag-exchanged forms of the HEU-type zeolite crystals (indicated/denoted as Zn-HEU and Ag-HEU respectively) were prepared in two steps; (1) the preparation of a Na homoionic form of the zeolite and (2) Na-exchange with Zn- and Ag-ions.

In order to prepare the Na homoionic form used as precursor for Zn-HEU, 1 g of the pulverized raw materials was treated for 24 h with 50 ml of a 2 M NaCl solution under refluxing. For the Na homoionic form used as precursor for Ag-HEU, only 0.65 g of pulverized raw material was treated with the same procedure.

The Na homoionic forms of the zeolite were separated by centrifugation, washed with double distilled water until they become Cl⁻ free and finally dried at 70 °C. A quantity of about 0.50 g of the prepared Na homoionic forms of the HEU-type zeolite crystals was treated under refluxing for 24 h with 50 ml of a 0.5 M Zn(NO₃)₂·4H₂O and for 24 h with 50 ml of a 0.3 M AgNO₃ solution for the preparation of its Zn-HEU and Ag-HEU forms respectively. After separation of the solid from the liquid phase by centrifugation, the Zn-HEU and Ag-HEU were washed with double distilled water and dried at 80 °C. The reagents used for the preparation of the Na-form of the HEU-type zeolite, Zn-HEU and Ag-HEU forms (NaCl, Zn(NO₃)₂·4H₂O and AgNO₃) were of analytical grade and used without further purification.

Samples suitable for TEM and high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) were prepared by mechanical grinding and polishing the HEU-type zeolite crystals followed by ion milling in a Balzers Ar⁺ ion mill. High resolution TEM (HRTEM) and HAADF-STEM images were acquired on an aberration-corrected FEI Titan ‘Cubed’ microscope operated at 80 kV. In order to minimize beam damage to the sample, all images were acquired using a low electron dose in the range of 50–150 e/A² s. The exposure time in TEM was limited to 0.1 s, and a beam blanking system was used in between acquisitions to minimize exposure of the sample to the electron beam. Image simulations were performed using the JEOL software package. Fourier filtering in Fig. 4 was performed using the Digital Micrograph software suite. Tomography series were acquired on a FEI Tecnai G2 microscope, operated at 200 kV acceleration voltage in STEM mode with an angular range from −70° to +65° for Zn-HEU and −70° to +70° for the Ag-HEU with a tilt increment of 5°, in order to minimize beam damage. A Fischione tomography holder (model 2202) was used and the series were acquired automatically using the Xplore3D software. The alignment of the series was performed with the Inspet 3D software. 3D reconstruction was performed using the Simultaneous Iterative Reconstruction Technique (SIRT) as implemented in the Inspet 3D software package (FEI Company).

XRPD analysis of the materials was performed using a Philips PW1710 diffractometer with Ni-filtered Cu-Kα radiation operating at 40 kV and 30 mA. The unit cell parameters of the HEU-type zeolite were refined by the Le Bail fitting of the XRPD data using the JANA2006 software [23].

The X-ray Absorption Fine Structure (XAFS) spectra were recorded at the Zn K-edge at the KMC-II beamline of the BESSY-II storage ring of the Helmholtz Zentrum Berlin. The beamline is equipped with a double SiGe (111) graded-crystal monochromator and a Röntec XFlash fluorescence detector that was used in order to electronically discriminate the Zn Kp photons. The detector was positioned in the horizontal plane at right angle to the incident beam. The angle of incidence was 80° to the sample surface. A ZnO powder sample was used as reference material after proper corrections for self-absorption. The spectra were normalized with the signal of an ionization chamber positioned in front of the sample. A Zn thin foil measured in the transmission mode was used for the correction of the energy shifts induced by the monochromator and as a reference material.

3. Results and discussion

3.1. Structural characterization of the pure HEU-type zeolite

To date, the main technique to study the structure of natural HEU-type zeolites has been single crystal X-ray diffraction [1]. However, XRPD collects structural information from a large area to reveal an average structure, and therefore does not provide local information. In order to gain more information on the pure HEU-type zeolite at a local level, low voltage aberration corrected TEM was used in this study. To keep the HEU framework from collapsing under the electron beam illumination, high resolution images were acquired from different crystal projections, while keeping the electron dose as low as possible through use of a low intensity beam and the lowest possible magnification. A beam blanking system was also used in between acquisitions to minimize exposure of the sample to the electron beam.
In Fig. 1, high resolution TEM images of the HEU-type zeolite are presented along five different zone axes, which allowed us to confirm, based on the XRPD measurements, the monoclinic structure of the HEU-type zeolite. Both Cowley&Moodie and Kremer et al. [24,25] reported that upon use of heavy under-focus conditions, tunnels or pores (less dense structures) will appear as bright contrast, while dense material within the sample will give rise to dark contrast. In our case the HRTEM images were taken at relatively large under-focus conditions, meaning white contrast features in the images should be the zeolite pores. To confirm this interpretation, we performed detailed image simulation for the [010] orientation of the sample at appropriate defocus and thickness values. The image simulation is displayed on Fig. 2 and is based on the structure model with C2/m space group, as deduced from X-ray diffraction measurements in the literature [10]. The simulation confirms our interpretation that the bright contrast features in the HRTEM images correspond to the least dense areas in the framework (double oxygen columns).

In Fig. 2a, an HRTEM image along the [010] zone axis together with the corresponding image simulation for a defocus value of 150 nm under focus and a thickness of 67 nm are presented. In Fig. 2b, a structural model of the HEU-type zeolite oriented along the [010] zone axis is overlaid to the magnified image simulation. The simulation is in good agreement with the experiment, even though the image acquisition was carried out under minimal electron dose and using a short exposure time of 0.1 s.
3.2. Characterization of the HEU-type zeolite after ion exchange with Ag\(^{+}\) and Zn\(^{2+}\) ions

XRPD patterns were taken for the HEU-type zeolite before and after ion-exchange with metals (Figs. SI 2,3). The refined unit cell parameters of the HEU-type zeolite are as follows: C2/m space group, \(a = 17.754(1)\) Å, \(b = 17.934(1)\) Å, \(c = 7.4364(5)\) Å, \(\beta = 116.38(1)^\circ\). These values are close to the parameters of other zeolites with the HEU-type structure (for example, PDF\#77-0339). On the XRPD pattern of the Ag-HEU sample we can notice that the most intensive 020 peak (\(2\theta \approx 10^\circ\)) is split into two sub-peaks. Since there are no admixtures that can be attributed to this peak, we believe that one of the peaks corresponds to the (020) reflection of the Ag-exchanged HEU-type zeolite and the other to the (020) reflection of the raw HEU. However, the laboratory XRPD data is insufficient for an accurate determination of the cell parameters of these two phases due to the strong overlap of the peaks. In the case of Zn-HEU, there is one reflection around \(10^\circ\), but it is significantly broadened in comparison to the HEU-type zeolite. Therefore, it is reasonable to conclude that this sample also consists of two phases: a Zn\(^{2+}\) exchanged HEU-type zeolite and the raw HEU-type zeolite, but their unit cell parameters are very close which results in a single broadened peak. This means that both the Ag-HEU and Zn-HEU samples contain an ion-exchanged and a raw HEU-type zeolite phase. Typically the treatment of HEU with Ag\(^{+}\) and Zn\(^{2+}\) ions does not affect the zeolite crystal structure [3,26], and we expect similar results in this work.

Since there are no extra reflections in the XRPD patterns which can be attributed to the presence of significant amounts of Ag\(\text{O}_x\) or Zn/ZnO phases, the Ag\(^{+}\) and Zn\(^{2+}\) ions are expected to be exchanged into the HEU-type zeolite structure, which is characterized by the presence of five distinct extra-framework sites (A1, A2, A3, B and C) (see supplementary information) that may host a variety of exchangeable cations [3].

However, the presence or absence of small nanoparticles or clusters after ion exchange cannot be ruled out by XRPD alone. Small amounts of crystalline Ag\(\text{O}_x\) or Zn/ZnO nanoparticles in the ion-exchanged material will not generate easily visible reflexes in the XRPD pattern, due to peak broadening as a consequence of their small size. Therefore, to confirm or rule out the presence of small clusters or nanoparticles in the ion-exchanged materials, electron microscopy imaging was carried out.

Fig. 3a and b are two HAADF-STEM (Z-contrast) images of sample Ag-HEU and Zn-HEU respectively. EDX spectra taken from the materials clearly show the presence of Ag for Ag-HEU and Zn for Zn-HEU, indicating the materials were partially ion-exchanged (Fig. 4c and d, EDX elemental analysis are presented in the supplementary information). From the Z-contrast image of Ag-HEU it is immediately obvious that larger Ag-containing nanoparticles have (also) been formed during the ion-exchange procedure. High resolution TEM imaging evidences that these larger nanoparticles are crystalline Ag (see supplementary information). The presence or absence of small Ag clusters can however not be made out from these images. In the case of Zn-HEU, the contrast in the HAADF-STEM image is totally different. The image contrast is uniform, excluding the presence of larger nanoparticles as in Ag-HEU. However, as discussed above, the EDX spectrum of Zn-HEU clearly indicates that Zn is present in the Zn-HEU material.

In order to study the possible presence of small clusters in the channels of the ion-exchanged Ag-HEU and Zn-HEU material, we used HRTEM imaging under low-dose conditions. A typical image of the Ag-HEU sample, oriented along the [010] zone axis orientation, is displayed in Fig. 4a. Preferential growth of (010) planes in the natural zeolite sample means this zone axis is the most frequently observed in the as-prepared sample. Careful observation of the image, and comparison to the data acquired from the empty HEU-type zeolite sample appears to reveal the presence of very small Ag clusters through extra dark-contrast spots that were not present in the case of the empty framework. To accurately determine the size of the Ag clusters, we removed the influence of the HEU lattice by applying a Fourier filtering technique to the HRTEM image, resulting in the image in Fig. 4b. This type of Fourier filtering has previously been successfully used for the imaging of nanoparticles on graphene supports [27]. By “removing” the HEU lattice, the size and shape of the Ag clusters becomes apparent. All Ag clusters are smaller than 1 nm in diameter and are therefore similar in size to the HEU pores (largest pore diameter = 0.6 nm). The fact that the clusters have a similar size to the HEU pores, makes it highly likely that they are indeed embedded inside the HEU zeolite host. Fig. 4b reveals that the Ag clusters are initially well-distributed throughout the micropores of the zeolite host. Immediately after the first HRTEM image in Fig. 4a, a second HRTEM image of the same region was acquired, which is displayed in Fig. 4c. Note that in between image acquisitions, the electron beam was blanked to spare the sample. It is clear that the short exposure of the HEU lattice to the electron beam has started to damage the HEU lattice. We applied the same Fourier filtering technique to this image, resulting in Fig. 4d. The Ag nanoparticles in this image are visibly larger than
those in Fig. 4b. The exposure of the material to the electron beam
has in other words resulted in a local destruction of the HEU lattice,
and an agglomeration of the embedded Ag nanoparticles. A third
and final image of the Ag-HEU is displayed in Fig. 4e. After just
three short exposures, the HEU lattice is completely destroyed, and
the Ag nanoparticles have agglomerated into larger 2–5 nm
structures under electron beam irradiation. These structures are
even better visible in the low-pass filtered image, displayed in
Fig. 4f.

The same procedure was followed for the Zn-HEU sample, in
order to confirm or rule out the presence of small Zn(O) clusters
inside the zeolite. As can be seen from Fig. 5a, dark-contrast fea-
tures, similar to those observed in the Ag-HEU sample, are observed
in the high resolution images. In analogy to the Ag clusters, these
dark contrast features are small Zn(O) clusters, that are likely
positioned inside the HEU pores. Similar to the Ag clusters in
Ag-HEU, the Zn(O) clusters grow under the electron beam irradia-
tion, and are more visible after the first exposure due to the
amorphization of the HEU lattice. The nature of these small Zn(O)
clusters will be discussed in detail in the XAFS section below [28].

Although TEM is a powerful technique for the study of nano-
materials, it can only provide 2D projections of 3D objects. In
order to reveal the exact positioning of the Ag and Zn(O) material
in the zeolite volume, electron tomography can be used. In this
technique, the sample is tilted over a wide tilt range inside the
electron microscope and images are acquired at few degree in-
tervals. These acquired images are used as an input for a
tomographic reconstruction, yielding a 3D representation of the
object [29,30]. We performed electron tomography measure-
ments on both the Zn-HEU and the Ag-HEU samples, with the
microscope operated in Z-contrast STEM mode. In the case of Ag-
HEU, the largest Ag nanoparticles, seen in HAADF-STEM images of
the sample in Fig. 6a, are located at the surface of the zeolite.
Smaller clusters are present inside the zeolite host. Similar to-
ography measurements were also carried out for the Zn-HEU.
The results reveal that the Zn(O) clusters appear brighter when
compared to the zeolitic matrix (Fig. 6b). The slice through the
tomographic reconstruction in Fig. 6f shows that the Zn(O) clus-
ters are inside the volume of the HEU-type zeolite.

Although a certain degree of framework collapse has certainly
taken place under the extended electron beam illumination needed
for electron tomography, the clusters and nanoparticles seen in the
reconstruction should not have moved far from their initial posi-
tion. This means we can conclude that small Ag clusters are initially
inside the zeolite host and not at the surface. Only the largest Ag
nanoparticles seen in the HAADF-STEM images are present at the
Ag-HEU surface.

To further investigate the nature of the Zn(O) clusters in the
Zn-HEU material, the bonding environment of Zn$^{2+}$ was studied
by means of XAFS spectra recorded at the Zn-K-edge. The $\chi(k)$
spectra, of the Zn-HEU, the ZnO powder and metallic Zn obtained
after atomic background subtraction of the EXAFS spectra and
transformation from the energy space to the k-space, are shown in
Fig. 7a along with the corresponding Fourier Transforms (FT)
shown in Fig. 7b. The fitting was performed using the FEFFIT program [31] and the photoelectron scattering paths were calculated using the FEFF8 code [32]. The spectra of the Zn-HEU and ZnO reference were fitted using the model of ZnO (S.G.: P 6_3 m c, a = 3.25 Å, c = 5.21 Å) whereas in the case of the Zn foil the Zn metal structure (S.G.: P 6_3/m m c, a = 2.66 Å, c = 4.95 Å) was used as a model. The coordination numbers of Zn in the ZnO and Zn foil reference samples were kept fixed to the values predicted by the model, whereas the nearest neighbor (nn) distances and the Debye-Waller factors were allowed to vary. The energy origin and the amplitude reduction factor were commonly iterated for all the nn shells of each sample. Importantly, in the case of Zn-HEU, the absence of peaks in the FT beyond the 1st nn shell indicates that Zn neither occupies positions in the host zeolite lattice nor forms separate ZnO phases. Therefore, the fitting was performed using only one nn scattering path and more specifically the first path from the ZnO model. During the fitting of the Zn-HEU EXAFS spectrum, the energy origin and the amplitude reduction factor were kept fixed to the values determined form the ZnO reference sample while the nn distance, coordination number and Debye-Waller factor were iterated. The fitting results are listed in Table 1.
According to the fitting results listed in Table 1, Zn does not form metallic clusters or ZnO precipitates. More specifically, both the coordination number and the nn distance, suggest that Zn is octahedrally coordinated forming oxo-complexes [26] which are sorbed predominately in the outer-sphere configuration [33]. The results are also supported by the direct comparison of the FT amplitudes in Fig. 7b.

The X-ray Absorption Near Edge Structure (XANES) spectra of the Zn-HEU, the ZnO (Zn$^{2+}$) powder and metallic Zn are shown in Fig. 7c. The position of the absorption edge in XANES spectra is affected by the oxidation state of the absorbing atom. As the oxidation state increases, the absorption edge usually shifts towards higher energies [34]. Furthermore, the spectrum of the Zn-HEU is significantly different from that of ZnO and Zn foil, while
it exhibits strong similarities with the spectra of octahedrally co-
ordinated Zn\(^{2+}\)[35]. Additionally, the position of the main peak above
the absorption edge in the Zn-HEU sample is red-shifted by 1.0 eV
relative to the corresponding peak of ZnO. This shift is consistent
with an octahedral coordination of Zn\(^{2+}\) in the Zn-HEU sample
verifying the results obtained from the extended part of the XAFS
spectrum [35].

To summarize, the EXAFS data in Table 1 evidences the
absence of a Zn-Zn nearest neighbor distance, and the presence
of a Zn-O nearest neighbor distance of 2.07 Å. This indicates that
the majority of the Zn\(^{2+}\) ions is present as lone ions within the
HEU-type zeolite structure, and is octahedrally coordinated with
oxygen. In Fig. 5a, few small Zn clusters are imaged in the first
TEM image. However, after just a short exposure to the electron
beam, more clusters can be seen, and the clusters have started to
grow. This demonstrates that the lone ions in the sample are
highly mobile within the zeolite framework and can agglomerate
extremely fast under electron beam irradiation. The speed at
which the clusters form is similar, and possibly even faster than
the damage mechanism of the electron beam to the zeolite
framework (predominantly radiolysis).

4. Conclusions

The results presented above demonstrate the ability of aber-
ration corrected transmission electron microscopy to charac-
terize the framework structure of the natural HEU-type zeolite,
as well as its interaction with guest metals. The HRTEM results
for the Ag-HEU and Zn-HEU clearly indicate the presence of small
Ag and Zn(O) clusters inside the zeolite structure. To further
corroborate the TEM results, we performed electron tomography
experiments which revealed the presence of Ag and Zn(O) ma-
terial inside the zeolite structure and partially on the surface.
Finally, in order to characterize the Zn\(^{2+}\) environment, we
resorted to EXAFS measurements. The results demonstrate that
the zinc cations in Zn-HEU arrange mainly in the form of small
octahedral oxo-complexes.

Table 1
Fitting results of the EXAFS analysis. N, R, \(\sigma^2\), \(\Delta\varepsilon\) and \(S_2^0\) correspond to the coordination number, the nearest neighbor distance, the Debye-Waller factor, the energy origin and the amplitude reduction factor, respectively. The errors reported are the uncertainties provided by the FEFFIT program.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Atom pair</th>
<th>N</th>
<th>R (Å)</th>
<th>(\sigma^2 \times 10^{-3}) (Å(^2))</th>
<th>(\Delta\varepsilon) (eV)</th>
<th>(S_2^0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zn-HEU</td>
<td>Zn–O</td>
<td>6.2 ± 0.5</td>
<td>2.07 ± 0.01</td>
<td>10.1 ± 1.7</td>
<td>–1.3</td>
<td>0.79</td>
</tr>
<tr>
<td>ZnO</td>
<td>Zn–O</td>
<td>4</td>
<td>1.96 ± 0.01</td>
<td>4.9 ± 0.8</td>
<td>–1.3 ± 0.5</td>
<td>0.79 ± 0.04</td>
</tr>
<tr>
<td></td>
<td>Zn–Zn</td>
<td>12</td>
<td>3.22 ± 0.01</td>
<td>8.9 ± 0.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Zn–O</td>
<td>9</td>
<td>3.76 ± 0.02</td>
<td>7.0 ± 1.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Zn–Zn</td>
<td>6</td>
<td>4.54 ± 0.04</td>
<td>7.2 ± 2.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zn–O</td>
<td>6</td>
<td>4.60 ± 0.04</td>
<td>3.0 ± 1.9</td>
<td>0.8 ± 0.4</td>
<td>0.80 ± 0.06</td>
<td></td>
</tr>
<tr>
<td>Zn–Zn</td>
<td>6</td>
<td>2.65 ± 0.01</td>
<td>10.5 ± 3.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zn–Zn</td>
<td>6</td>
<td>2.78 ± 0.01</td>
<td>23.0 ± 2.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zn–Zn</td>
<td>6</td>
<td>3.92 ± 0.01</td>
<td>22.0 ± 1.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zn–Zn</td>
<td>6</td>
<td>4.61 ± 0.04</td>
<td>18.7 ± 6.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zn–Zn</td>
<td>12</td>
<td>4.77 ± 0.04</td>
<td>21.4 ± 1.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zn–Zn</td>
<td>6</td>
<td>5.15 ± 0.03</td>
<td>16.7 ± 3.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zn–Zn</td>
<td>12</td>
<td>5.52 ± 0.03</td>
<td>14.4 ± 1.7</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Acknowledgments

GVT and MF acknowledge funding from the European Research Council under the 7th Framework Program (FP7), ERC grant No246791 – COUNTATOMS. This work is also performed within the framework of the IAP-PAI.

The XAFS measurements at HZB were financially supported from the European Community’s 7th Framework Program (FP7/2007-2013) under grant agreement No 226716. S.T. gratefully acknowledges the Fund for Scientific Research Flanders (FWO). We would like to thank Prof. Nikolaos Kantiranis for performing the XRPD measurements and Dr. Maria Batuk for her assistance with the analysis of the XRPD measurements.

Appendix A. Supplementary data

Supplementary data related to this article can be found at http://dx.doi.org/10.1016/j.micromeso.2015.01.043

References