Nonlinear Optical Properties of Ag Nanoclusters and Nanoparticles Dispersed in a Glass Host

Hong Hanh Mai,†‡§ Mikhail V. Shestakov,†‡ Victor K. Tikhomirov,†§ Ewald Janssens,*† Vladimir E. Kaydashev,†‡ Maria Meledina,§ Stuart Turner,§ Gustaf Van Tendeloo,§ Victor M. Moshchalkov,† and Peter Lievens†

1Laboratory of Solid State Physics and Magnetism and 2INPAC—Institute for Nanoscale Physics and Chemistry, KU Leuven, Celestijnenlaan 200D, 3001 Leuven, Belgium
3EMAT, Department of Physics, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium

ABSTRACT: The nonlinear absorption of Ag atomic clusters and nanoparticles dispersed in a transparent oxyfluoride glass host has been studied. The as-prepared glass, containing 0.15 atom % Ag, shows an absorption band in the UV/violet attributed to the presence of amorphous Ag atomic nanoclusters with an average size of 1.2 nm. Upon heat treatment the Ag nanoclusters coalesce into larger nanoparticles that show a surface plasmon absorption band in the visible. Open aperture z-scan experiments using 480 nm nanosecond laser pulses demonstrated nonsaturated and saturated nonlinear absorption with large nonlinear absorption indices for the Ag nanoclusters and nanoparticles, respectively. These properties are promising, e.g., for applications in optical limiting and object’s contrast enhancement.

INTRODUCTION

Noble metal nanoparticles have attracted a lot of interest for applications in optical devices due to their enhanced third order nonlinear optical response near the surface plasmon resonance (SPR).1 The optical Kerr effect, characterized by a complex third order susceptibility $\chi^{(3)}$, which includes nonlinear absorption and refraction coefficients, takes place in isotropic media where the second order optical nonlinear effect is forbidden.1,2 The third order nonlinear optical response of gold atomic clusters and nanoparticles dispersed in the liquid host of toluene demonstrates a low threshold for optical nonlinearity and low power limiting associated with the absence of absorption saturation.3 Large two-photon absorption cross sections for monolayer protected gold clusters are observed, which suggests future application of these particles in optical limiting materials.4 The nonlinear optical properties of silver nanocolloids have also been shown to switch to saturated absorption at high laser irradiances.5

A liquid host for optical nonlinear particles has obvious disadvantages, such as poor mechanical and chemical robustness and high attenuation due to light scattering. Therefore, we were looking for a more durable and stable host for optical nonlinear noble metal clusters and nanoparticles. A glass host for example intrinsically provides possibilities for high optical transparency and preparation in differently shaped bulk forms, including planar waveguides and fibers.6,7 Bulk glasses doped with Ag nanoclusters or nanoparticles homogeneously dispersed across the doped bulk glasses can be prepared by conventional melt-quenching methods as is described in refs 6 and 7, whereas doping by ion exchange is producing nanoclusters that are embedded in a thin layer near the surface of the glass only.8 Silver nanoparticles are of particular interest because they are known to have optical absorption transitions with high oscillator strengths. Quenching of the oscillator strength in small Au, Ag, and Cu clusters is usually associated with enhanced s–d hybridization. For silver clusters the s–d hybridization is less pronounced than for gold clusters of the same size.9–11 Thus, higher nonlinear absorption coefficients are expected for Ag. In addition, maximal quantum efficiencies that are reported in the literature for Ag nanoclusters (64–69%)12,13 are larger than those reported for Au (41%).14 The Ag nanoclusters in the glass host used in this work do emit a broad white luminescence with a quantum yield above 20%.5

In this work the nonlinear absorption of Ag clusters (average size 1.2 nm) and Ag nanoparticles (average sizes 2.4 and 2.8 nm) dispersed in a transparent oxyfluoride glass host is studied by z-scan experiments using 480 nm nanosecond laser light. Nonsaturated nonlinear absorption and saturated nonlinear absorption were found for the Ag atomic clusters and Ag nanoparticles, respectively. An energy level diagram with the respective excitation transitions is proposed for the Ag

© 2014 American Chemical Society

nanoclusters and nanoparticles involved in the observed nonlinear phenomena.

EXPERIMENTAL SECTION

The silver doped oxyfluoride glasses were prepared by conventional melt-quenching methods using chemicals supplied by Alfa Aesar. Hereto SiO$_2$, Al$_2$O$_3$, CdF$_2$, PbF$_2$, ZnF$_2$, and AgNO$_3$ powders were placed in a Pt crucible. The chemical formula of the glass host is 33(SiO$_2$)$_{9.5}$(AlO$_{1.5}$)$_{32.5}$(CdF$_2$)$_{19.5}$(PbF$_2$)$_{5.5}$(ZnF$_2$) mol %. This oxyfluoride glass was selected because it is known to be a good glass former, and in addition is well capable of dissolving luminescent dopants such as Ag nanoclusters6,7 or rare-earth ions.15 A pure oxide host does not dissolve Ag nanoclusters/particles within its bulk; the fluoride component is required to dissolve nanoparticles. Doping was obtained by addition of AgNO$_3$ to the batch that was melted in a tube furnace at 1000 °C for 1 h and afterward cast into an Al mold at room temperature. Details of the preparation procedure of the bulk oxyfluoride glasses that are uniformly doped with Ag nanoclusters and nanoparticles have been reported elsewhere.6,7 Photographs of the samples are shown in Figure S1 of the Supporting Information. The as-prepared glasses doped with Ag nanoclusters have a light yellow color due to an absorption band in the UV/violet. Upon further heat treatment in air at 350 °C, larger Ag nanoparticles are formed and an Ag-related plasmon absorption band appears in the visible part of the spectrum, giving the glasses a red color. Note that the heat treatment was carried out at 350 °C, which is below the glass transition temperature of 370 °C.15

Transmission electron microscopy (TEM) investigations were carried out using a Philips CM 30 electron microscope operated at 300 kV. To do so, the glass samples were crushed in an agate mortar with ethanol and a drop of the suspension was placed onto a holey carbon grid. To obtain the size distribution, the diameters of roughly 75 particles were measured for each sample, assuming a spherical morphology. Annular dark field scanning transmission electron microscopy (ADF-STEM) images and energy-dispersive X-ray analysis (EDX) maps were acquired on an aberration-corrected Titan “cube” microscope, operated at 120 kV acceleration voltage and equipped with a four-quadrant “Super-X” EDX detector. The convergence semiangle α used was 22 mrad; the acceptance inner semiangle β used was 33 mrad.

Absorbance spectra were recorded with a Bruker Vertex 80 V Fourier transform spectrometer.

The nonlinear optical absorption of the glass samples was investigated by open aperture z-scan experiments,16,17 in which the thin transparent samples were translated longitudinally in a tightly focused laser beam and the transmittance was measured in the far field. The nonlinear refraction of the studied samples was found to be negligible and is therefore not discussed here. Indeed, refraction induced by scattering at nanoparticles is known to be small if the particles’ diameters are smaller than 10 nm.18 As light source for the z-scan experiment a 480 nm pulsed laser beam with a Gaussian beam profile was used. The light originates from an optical parametric oscillator (OPO) pumped by a Quanta-Ray Nd:YAG laser (8 ns pulse duration and 10 Hz repetition rate). The laser beam radius ω_0 was calculated to be 18 μm. Note that the laser beam is partially cut

*

Figure 1. Bright-field TEM images of (a) as-prepared (sample A), (b) heat treated for 6 h (sample B), and (c) heat treated for 38 h (sample C) Ag-doped glasses. The insets show enlarged images of the amorphous nanoclusters and nanoparticles present. (d) Size distributions of the Ag clusters/nanoparticles present in the samples. Blue, as-prepared; red, 6 h treated; green, 38 h treated.
by a diaphragm. Taking into account the entire optical scheme, the Rayleigh length is estimated to be 14 mm. This is much larger than the sample thickness of 1.35 mm, satisfying the basic criteria of a z-scan experiment. The sample irradiance along the z-scan was varied in the 10^{10}–10^{12} W/m² range. The nonlinear absorption coefficient and the absorption saturation irradiance are evaluated from the fit of the z-scan curves by direct numerical solving of the differential equations for the sample transmittance. No optical degradation of the samples was observed up to the highest applied laser fluence of \sim1 J/cm².

RESULTS

Bright-Field TEM Imaging.

Figure 1 shows bright-field TEM images of Ag nanoparticles and nanoclusters in the as-prepared (sample A), 6 h heat-treated (sample B), and 38 h heat-treated (sample C) glasses. An EDX analysis performed on the same sample in a previous study indicated a 0.15 atom % total concentration of Ag in the as-prepared glass sample, and consequently in the heat-treated glass samples too, even though the batch contained 5 wt % AgNO₃. One could speculate that such dissolution of Ag (0.15 atom %) may be close to optimum, while the remaining Ag may evaporate in the melting process. It should be noted that all three samples are unstable under electron beam illumination conditions, and the Ag nanoparticles have a tendency to agglomerate. Therefore, all microscopy was performed using the shortest possible electron beam exposure of the samples. High resolution (HR) TEM imaging demonstrates that none of the smallest Ag clusters in the material are crystalline. No lattice fringes are observed in any of the HR-TEM images, meaning all the smallest clusters are amorphous in nature.

Size distributions of the Ag clusters/nanoparticles samples are provided in Figure 1d. Individual size distributions of samples A, B, and C are available as Figure S2 in the Supporting Information. The average diameter (and median diameter) of the Ag nanoparticles in samples A, B, and C corresponds to 1.2 nm (1.2 nm), 2.4 nm (2.3 nm), and 2.8 nm (2.2 nm), respectively. It is clear that, upon increase of the sample treatment time, the average cluster/nanoparticle size also increases. The median sizes for samples B and C are very similar, as the longer treatment leads to the formation of only a small number of larger nanoparticles. The majority of particles in sample C have a diameter below 5 nm.

In the case of the 38 h sample (sample C), significantly larger nanoparticles, up to tens of nanometers in diameter, are also infrequently present in the glass matrix. In order to investigate the nature of these larger Ag nanoparticles, energy-dispersive X-ray analysis mapping and (high-resolution) ADF-STEM were carried out (Figure 2). In Figure 2a, an ADF-STEM image of a rare, large spherical Ag nanoparticle in the 38 h treated sample is displayed. The EDX maps for Ag and O presented on the right clearly demonstrate that the nanoparticle is composed of metallic Ag, as evidenced by the EDX maps for Ag and O. (b) HR-ADF-STEM image of the same nanoparticle, with inset Fourier transform pattern, demonstrating that the particle is polycrystalline in nature.

Absorbance Spectroscopy Data.

Values of the optical density (or absorbance) of the Ag doped glasses are shown in Figure 3. The optical density is presented after correction for reflectance of 4% from each face of the sample. The absorbance spectra of the undoped glass and sample A only show an onset of a pronounced absorption in the violet/UV part of the spectrum, corresponding to the absorption of the glass host and Ag nanoclusters consisting of a small number of Ag atoms. The absorbance spectra of the undoped glass and sample A only show an onset of a pronounced absorption in the violet/UV part of the spectrum, corresponding to the absorption of the glass host and Ag nanoclusters consisting of a small number of Ag atoms.
Table 1. Linear (α_0) and Nonlinear (β) Absorption Coefficients, Absorption Saturation Intensity (I_s), and One- (σ) and Two-Photon (δ) Absorption Cross Sections of the Studied Ag Doped Glass Samplesa

<table>
<thead>
<tr>
<th>sample (Ag nanoparticle diameter)</th>
<th>α_0 $[10^2 \text{ m}^{-1}]$</th>
<th>β $[10^{-30}\text{ m/W}]$</th>
<th>I_s $[\text{W/m}^2]$</th>
<th>σ $[10^{-22}\text{ m}^2]$</th>
<th>δ $[10^9 \text{GM}]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>A (1.2 nm)</td>
<td>3.2 ± 0.3</td>
<td>5 ± 1</td>
<td>>1012</td>
<td>0.1–1.1</td>
<td>0.06–0.8</td>
</tr>
<tr>
<td>B (2.4 nm)</td>
<td>5.8 ± 0.5</td>
<td>60 ± 10</td>
<td>5 × 109–3 × 1010</td>
<td>1.5–12</td>
<td>5–60</td>
</tr>
<tr>
<td>C (2.8 nm)</td>
<td>8.9 ± 0.8</td>
<td>15 ± 3</td>
<td>(7 ± 1) × 1010</td>
<td>4–30</td>
<td>3–25</td>
</tr>
</tbody>
</table>

aUncertainty ranges are related to the uncertainty on the sample thickness for α_0 and refer to statistical errors on the fit for β and I_s. For σ and δ the uncertainty ranges depend on the uncertainty on the particle concentration and on the statistical errors on α_0 and β, respectively.

![Normalized transmittance graph](image)

Figure 4. Open aperture z-scans for (a) sample A, (b) sample B, and (c) sample C. A scheme of the used z-scan setup is shown as inset in (a). The evolution of nonlinear absorption behavior induced by heat treatment of the glass from nonsaturated absorption for nanoclusters (a) to saturated absorption for larger nanoparticles (b, c) is demonstrated. The solid lines are fits to the data using eq 3.

To model the z-scan curves in Figure 4, the nonlinear absorption coefficient α is defined by

$$\alpha(I) = \frac{\alpha_0}{1 + I/I_s} + \beta I$$

Herein, β is the nonlinear absorption coefficient, I_s is the absorption saturation, and I is the incident irradiance. Equation 1 reflects a simplified physical picture, which assumes that the electronic levels involved in the absorption process are nondegenerate. Further improvement of the model is only possible for well-defined cases where the electronic level structure is known.7 If $I \ll I_s$, the absorption does not saturate and $\alpha(I) = \alpha_0 + \beta I$. For low incident irradiances, βI can be neglected and the absorption does not depend on incident irradiance, corresponding to the linear regime. Along the axis of the Gaussian beam, z, and with r the radial distance from the beam axis, the irradiance incident on the sample changes as

$$I(r, z) = I_0 \left(\frac{\rho_0}{\rho(z)} \right)^2 \exp \left[-\frac{2r^2}{\rho^2(z)} \right]$$

where I_0 is the laser irradiance at the focal plane for $r,z = 0$ and $\rho(z)$ is the radius of the laser beam, which depends on z as $\rho(z) = \rho_0 \left(1 + (z/z_{R})^2 \right)^{1/2}$, where ρ_0 is the beam radius in the beam waist and z_{R} is the Rayleigh range. Within the glass medium the irradiance changes, in addition to the focusing, because of the absorption:

$$\frac{dI(z')}{dz'} = -\alpha(I(z'))I(z')$$

where z' is an internal coordinate in the sample, $z' \in [0,L]$, parallel to the z-axis. Equation 3 corresponds to the Beer–Lambert law if the optical medium is linear ($\alpha_ = \alpha_0$).
The irradiance upon leaving the sample, and thus the sample transmittance, can be obtained by solving eq 3 numerically for a given incident irradiance. Doing this for all \(I(0,z) \) along the z-axis using eq 2 gives a transmittance curve as a function of two parameters, \(\beta \) and \(I_c \). Fitting the simulated curve to the measured transmittance, normalized for the transmittance in the linear regime, allows deriving those parameters. Details of the fitting procedure are provided in the Supporting Information. Although the fit is a function of two parameters, one can explicitly define the values of both because they affect the fitting curve differently. Whereas the absorption saturation \(I_s \) is responsible for an increase of the transmittance over unity, the nonlinear absorption coefficient \(\beta \) is responsible for the valley at high irradiance (in the center of the z-scan curve).

The fits are included in Figure 4, and the corresponding values of \(I_s \) and \(\beta \) are summarized in Table 1. The uncertainty ranges are related to the quality of the fit and have been set to values corresponding to an increase of sum of squares of the residuals by 20%.

The absorption coefficients \(c_0 \) and \(\beta \) can be converted into one- and two-photon absorption cross sections \(\sigma \) and \(\delta \), respectively, if one knows the concentration of the particles, \(D_c \), via the relations \(\sigma = \alpha/D_c \) and \(\delta = \beta/\hbar \nu/D_c \), where \(\hbar \nu \) is the photon energy. The order of magnitude of the particle concentration can be estimated from the known atomic percentage of Ag (0.15 atom %), the average Ag particle diameter, and the ratio of the volume of a Ag atom to the average atomic volume of the glass host. This yields concentrations of \((3−30) \times 10^{24} \text{ m}^{-3}\) for sample A, \((5−40) \times 10^{23} \text{ m}^{-3}\) for sample B, and \((3−20) \times 10^{23} \text{ m}^{-3}\) for sample C. The absorption cross sections \(\sigma \) and \(\delta \) are listed in Table 1.

Glasses with small Ag clusters do not show absorption saturation under the current conditions (\(I_s > 10^{12} \text{ W/m}^2 \)), and the nonlinear absorption coefficient of \(\beta = 5 \times 10^{-10} \text{ m/W} \) is comparable with the nonlinear absorption coefficient obtained for Au clusters dispersed in solution.3 The calculated two-photon absorption cross section \(\delta \) of \((0.06−0.8) \times 10^9 \text{ GM} \) (1 GM = 10^{-16} \text{ m}^2 \text{ s per molecule and per photon}) is comparable to that obtained for monolayer protected Au_{25} clusters, 0.427 \times 10^6 \text{ GM} .4,28 Upon annealing the atomic clusters agglomerate to form larger amorphous particles, and eventually some larger polycrystalline particles appear (sample C only). This change results in a stronger light absorption at the SPR wavelength and absorption saturation at moderate irradiances (Figure 4b,c). The largest \(\beta \) and \(\delta \) values are obtained for the sample containing 2.4 nm Ag nanoparticles (sample B). A similar maximum of the nonlinear absorption coefficient accompanied by lowering of the absorption saturation threshold was also observed with increase of the Au clusters’ size in solution. In ref 3 Au_{144} clusters, corresponding to a particle size of about 2 nm, had the largest \(\beta \). In ref 28 a maximum in the two-photon absorption cross section of 1.476 \times 10^6 \text{ GM} was found for Au_{190} in hexane, which is lower than the values found in the current work for sample B (with particles of a comparable size). Further heat treatment of the glass sample leads to an increase of the Ag nanoparticle size (sample C) and shows a decrease of the \(\beta \) and \(\delta \) values.

The normalized transmittance of samples A and B is plotted as a function of the incident fluence (Figure 5). The transmittance is nearly constant at low incident fluences and decreases beyond a certain incident fluence level. Defining the optical limiting thresholds, \(F_o \) as the fluence at which the transmission drops to 75% of the linear transmission, thresholds of 0.54 and 0.12 J/cm^2 are found for samples A and B, respectively. It is to be noted that the optical limiting threshold gets lowered as the Ag particles become larger. Moreover, the optical limiting thresholds found here are lower than those of other materials with good optical limiting properties, such as Ag:TiO_2 nanocomposites25 and ligand protected gold clusters in toluene, demonstrating the viability of the samples as optical limiting materials.

DISCUSSION

Sample A contains Ag clusters with a size of 1.2 ± 0.4 nm, which, assuming a spherical cluster geometry and a bulk density, corresponds to 15–125 atoms with a most probable size of ~50 atoms. Experimental studies of silver clusters in an argon matrix demonstrate that the optical absorption spectra of clusters containing less than about 15 atoms show molecular-like absorptions in the 3.0–5.0 eV range with strong size-to-size variations.29,30 For larger clusters the spectra evolve with increasing size from molecular-like to plasmon-like. Calculated optical spectra show the appearance of plasmon-like features in the size range of 20–120 atoms.20 The spectra have one intense absorption band, with position varying linearly in a region of 3.6–3.0 eV with the inverse size of the Ag clusters (1.04–2.21 nm for 20–120 atoms), and a less intense tail in the higher energy range (4.0–5.5 eV).20,29 The main optical transitions in the absorption spectrum originate from sp → sp intraband transition, corresponding to the plasmon resonance for larger particles, while less intense d → sp interband transitions contribute at higher energies.20 For Ag_{nm} (\(n = 10–22 \)) clusters, molecular orbitals near the Fermi level, \(E_F \) have mostly sp character because the d-band is situated more than 3 eV below \(E_F \).21
transitions, and the less intense absorption tail, stretching from 400 to 700 nm, may be related to the size distribution (and the shift of the absorption to the red with increasing cluster size). A hypothetical energy level diagram is proposed to explain the observed nonlinear absorption measured by the z-scan experiments (Figure 6a). At low incident beam irradiance

only a single photon molecular-like absorption takes place for the used excitation (2.58 eV). Fast photoluminescent decay (between 5 and 100 ns depending on used preparation conditions) takes place in the Ag-doped glasses.34 Thus, depopulation of the upper level happens on a time scale comparable to the duration of the laser pulse. Meanwhile, the absorption, different from the situation for plasmonic particles, shows nonresonant behavior and the population of the upper level will not be saturated.

Upon enhancement of the laser irradiance by moving the sample toward the beam waist two-photon absorption processes also become possible. These transitions can be both d → sp transitions ((2) in Figure 6a) from lower lying d-like orbitals and sp → sp excitations ((3) in Figure 6a) from levels below E_f to unoccupied electronic states. Opening of the two-photon absorption channel, associated with β, leads to a decrease of the sample transmittance. This is observed as a central valley in the z-scan curve (Figure 4a).

For the silver nanoparticles of sample C, the used excitation wavelength of 480 nm (2.58 eV) coincides with the SPR ((4) in Figure 6b). At low incident beam irradiance, corresponding to the case that the sample is far from the focus, the number of transitions scales with the irradiance (linear regime). Excitation at the SPR corresponds to a high photon absorption probability. This leads to absorption saturation at moderate irradiance ($I(z) \sim 1 \times 10^{10}$ W/m²) due to electron population equalization of the lower unoccupied and upper occupied levels. The absorption saturation already takes place at the beginning of the investigated z-scan range and renders the sample more transparent. This is the origin of the humps in the transmittance on both sides of the central valley (Figure 4c).

Upon further enhancement of the laser irradiance two-photon absorption processes can take place, corresponding to d → sp interband transitions ((5) in Figure 6b) from lower lying d-like orbitals and sp → sp intraband excitations ((6) in Figure 6b) from levels below E_f. As is also the case for sample A, the opening of the two-photon absorption channel leads to a decrease of the sample transmittance that is observed as a central valley in the z-scan curve (Figure 4c).

Sample B can be seen as a situation that is intermediate between sample A and sample C. The SPR is not completely developed (as seen in Figure 3). On the other hand, some absorption saturation is observed and the nonlinear absorption coefficient reaches a maximum leading to a reduced transmittance at high irradiance. This makes sample B the most promising of the studied samples for optical limiting applications.

In agreement with the present results on the small amorphous Ag particles (samples A and B), the two-photon absorption cross section of Au clusters was also found to increase with cluster size.28 It should be noted that for Au clusters the d-band is situated closer to the sp-band and the one photon d → sp interband transitions can occur for the 2.58 eV excitation used, while for Ag clusters the energy of a single photon is not sufficient to excite d → sp transitions. The reduced nonlinear absorption coefficient for sample C, as compared to sample B, is likely related to further increase of the particle size. In addition, the formation of large polycrystalline nanoparticles may have an effect on the nonlinear absorption.

CONCLUSION

Optical nonlinear absorption of Ag nanoclusters (~1.2 nm diameter) and Ag nanoparticles (~2.8 nm diameter) dispersed within a transparent oxyfluoride glass host was studied using a z-scan experiment following excitation close to the plasmon resonance of the nanoparticles.

Upon annealing of the samples, the Ag particles become larger, which is reflected in an evolution of nonlinear absorption properties from a nonsaturated to the saturable regime under incident laser irradiances of $5 \times 10^{7} - 7 \times 10^{10}$ W/m². With increase of the Ag particle size from 1.2 to 2.4 nm, the nonlinear absorption coefficient of the glasses is enhanced from 5×10^{-10} to 60×10^{-10} m/W, associated with absorption saturation appearance $I_s \approx 10^{10}$ W/m². Further annealing of the samples leads to the formation of larger amorphous and a few polycrystalline nanoparticles that show a clear SPR band, absorption saturation, and a reduction of the nonlinear absorption coefficient to 15×10^{-10} m/W. In addition, a reduction of the optical limiting threshold by moderate heat treatment of the samples is found.

Absorption saturation in nanoparticles even at low irradiances originates from the electron population equalization at the lower and upper levels of the occupied and unoccupied states via resonant sp → sp intraband transitions. Two-photon absorption channels open at higher irradiance due to the d → sp interband and sp → sp intraband excitations. Opposite to plasmonic particles, the sp → sp intraband absorption is not saturated for atomic clusters and the opening of two-photon absorption channels has only an additive character. The nonlinear absorption properties of these glasses doped with

Figure 6. Schematic energy level diagram of electronic excitation transitions using 2.58 eV photons in Ag (a) nanoclusters and (b) nanoparticles. Single photon optical absorption in clusters and collective excitation near the plasmon resonance for particles are colored blue. Two-photon absorptions via virtual states are colored red. Nonequal and equal populations of upper and lower electronic states corresponding to (a) linear absorption for clusters and (b) absorption saturation for nanoparticles are represented by yellow circles.

dx.doi.org/10.1021/jp502294u J. Phys. Chem. C 2014, 118, 15995–16002
small Ag nanoclusters are promising for applications in optical limiting and object's contrast enhancement.

ASSOCIATED CONTENT

Supporting Information

Photograph of the glass samples; size distributions of the Ag clusters/nanoparticles present in samples A, B, and C; EDX maps for Al, Cd, Pb, Si, Zn, F, Ag, and O for the same region as depicted in Figure 2a; HR-ADF-STEM image showing a large amorphous Ag nanoparticle; and details of fitting procedure that was used for derivation of β and I_g. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

*E-mail: ewald.janssens@fys.kuleuven.be.

Present Address

1Department of Electronic Materials, School of Engineering Physics, Hanoi University of Science and Technology (HUST), Vietnam.

Author Contributions

2H.H.M. and V.E.K. contributed equally to this work.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work is supported by the Research Foundation—Flanders (FWO) and by the KU Leuven Research Council (BOF, GOA, and IDO programs). The authors are grateful to Methusalem funding by the Flemish government. M.V.S. acknowledges the FWO for a Ph.D. fellowship. S.T. acknowledges the FWO for a postdoctoral fellowship. Part of this work was supported by funding from the European Research Council under the seventh Framework Program (FP7), ERC Grant 246791—COUNTATOMS and the EC project IFOX.

DEDICATION

This publication is dedicated to the memory of Victor K. Tikhomirov.

REFERENCES

