Interface-controlled magnetism and transport of ultrathin manganite films

O. Shapoval, 1 S. Hünn, J. Verbeeck, M. Jungbauer, A. Belenchuk, and V. Moshyaga

1HEN, Academy of Sciences of Republic Moldova, Academiei 3/3, MD-2028 Chisinau, Republic of Moldova
2Ernstes Physikalisches Institut, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, D-37077 Göttingen, Germany
3EMAT, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium

(Received online 19 March 2013; published online 19 March 2013)

We report ferromagnetic, $T_C = 240$ K, and metallic, $T_{MI} = 250$ K, behaviors of a three unit cell thick interface engineered lanthanum manganite film, grown by metalorganic aerosol deposition technique on SrTiO$_3$(100) substrates. Atomically resolved electron microscopy and chemical analysis show that ultrathin manganite films start to grow with La-O layer on a strongly Mn/Ti-intermixed interface, engineered by an additional deposition of 2 u.c. of Sr-Mn-O. Such interface engineering results in a hole-doped manganite layer and stabilizes ferromagnetism and metallic conductivity down to the thickness of $d = 3$ u.c. The films with $d = 8$ u.c. demonstrate a bulk-like transport behavior with $T_{MI} \sim T_C \sim 310 - 330$ K. © 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4795422]

Recent fundamental and technological interest for ultrathin films of correlated oxides, like perovskite manganites, alumimates, titanates, and cuprates, with the thickness of only a few unit cells (u.c.) is basically determined by the two attractive possibilities: (1) to stabilize bulk-like properties (magnetism, metallicity, and ferroelectricity) in ultrathin films, thus making use of the advantages of half-metallic manganites for tunneling magnetoresistance (TMR) and/or films, thus making use of the advantages of half-metallic attractive possibilities: (1) to stabilize bulk-like properties a few unit cells (u.c.) is basically determined by the two thin films of correlated oxides, like perovskite manganites, grown on SrTiO$_3$ and/or depressions, containing metalorganic precursors, i.e., La-, Sr-, and NdGaO$_3$, or LaAlO$_3$ single crystals were used as substrates. For an optimally doped single La$_{0.5}$Sr$_{0.5}$MnO$_3$ (LSMO)/SrTiO$_3$(100) film grown by PLD, the metal-insulator (MI) transition survives down to $d_c = 7 - 13$ u.c.. This thickness was found to be almost independent whether STO, MgO, NdGaO$_3$, or LaAlO$_3$ single crystals were used as substrates. For an optimally doped single La$_{0.5}$Sr$_{0.5}$MnO$_3$ (LSMO)/STO(100) film grown by PLD, the metal-insulator (MI) transition is survived down to $d_c = 8$ u.c. and a FM ground state with, however, strongly reduced Curie temperature, $T_C \sim 80 - 100$ K, was detected for $d = 5$ u.c. For short-period (LSMO/STO) superlattices, Kourkoutis et al. have demonstrated FMM behavior for $d \geq 5$ u.c. with $T_{MI} \sim T_C \sim 280$ K, i.e., close to room temperature. Note that even with PLD, which is the mostly elaborated oxide film growth technique; the properties of ultrathin films are very sensitive to the growth parameters, like laser fluence. Although a detailed mechanism of the formation of a "dead" layer is still not known, the symmetry-breaking-induced orbital ordering and related changes in the lattice structure, accompanied by electronic modifications, seem to play an important role. To preserve the FM behavior close to the interface, Yamada et al. suggested an "interface engineering" approach, which employs a deposition of 2 u.c. of LaMnO$_3$ (LMO) at each interface in the LSMO/STO superlattice structure. Considering LMO having one e_g-electron per Mn ion, the interface engineering can be viewed as an electron doping effect, which compensates the interface-induced hole overdoping. Very recently, another engineering recipe, i.e., LMO-SMO buffering on a STO substrate, was shown to enhance FM properties of an 8 u.c. thick LSMO film as compared to the unbuffered LSMO/STO(100) film. Here, we report the growth of ultrathin, $d = 3 - 8$ u.c., LMO and LSMO films on STO(100) substrates by a vacuum-free metalorganic aerosol deposition (MAD) technique and show that the FMM ground state can be stabilized down to a thickness of $d \sim 3$ u.c., by forming a strongly intermixed (La,Sr)(Mn/Ti)O$_3$ layer at the manganite/STO interface.

LMO and LSMO films were prepared and interface engineered by MAD technique, which is assumed to provide an exact oxygen stoichiometry in the grown manganite layers due to a high ($P_O \sim 0.21$ atm) gas pressure. The films were prepared by spraying aerosols of organic solutions, containing metalorganic precursors, i.e., La-, Sr-, and Mm-acetylacetonates, onto a TiO$_2$-terminated STO(100) substrates, heated to $T_{sub} = 900 - 950$ °C. A monolayer accuracy was achieved by calibration of the precursor dosing units while depositing a thicker LMO and LSMO films with thicknesses, $d = 10 - 30$ nm, measured ex-situ by small angle X-ray scattering. To engineer the interfaces, 2 u.c. SMO were deposited onto the STO substrate as well as onto the surface of the grown LMO film, capped additionally by a
La – O/TiO2 bi-layer. The nominal structure of the films is SMO_{n u. c.}/LMO_{x}/SMO_{n u. c.} with n = 3–8 u.c. Considering the used feeding rate of the precursor solution 20μl/s and the precursor volumes 15μl(SMO)/30μl(LMO)/15μl(SMO), the total deposition time of the trilayer consists of about 3–5 s. After deposition, the films were cooled down to room temperature in 5 min. The structure was characterized by scanning tunneling microscopy (STM) and scanning transmission electron microscopy (STEM), equipped with a high annular angle dark-field detector (HAADF) and electron energy loss spectrometer (EELS). Four-probe electron transport and magnetization were measured as a function of temperature, \(T = 2–400 \text{K}, \) and magnetic field, \(\mu_BH = 0–5 \text{T}, \) using commercial Physical Property Measurement System (PPMS) and SQUID (Magnetic Property Measurement System (MPMS)), respectively.

A STM image of a 3 u.c. thick LMO film, shown in Fig. 1(a), clearly demonstrates atomic terraces of about 150 nm width, originated from the STO(100) substrate, evidencing a layer-by-layer growth of the manganite film. The step height, \(h \sim 0.4 \text{nm}, \) agrees with the c-axis lattice parameter of the manganite. The measured mean square roughness of the film, \(RMS = 0.2 \text{nm}, \) is mainly due to the incompletely filled last perovskite layer. The cross-section low magnification TEM image (Fig. 1(b)) together with the STM picture in Fig. 1(a) basically confirm continuity, flatness and single crystal character of ultrathin films, although some thickness fluctuations of 2–4 u.c. as well as some indications of the surface damage due to sample preparation via ion beam milling (FIB) can be seen. A detailed structure of the film at the atomic scale was obtained by HAADF and EELS analyses.

The high resolution HAADF image in Fig. 2(a) reveals a perfect epitaxy and coherent growth of the manganite film on the STO substrate. The distribution of La, Mn, and Ti elements obtained by EELS analysis at the atomic scale (see Fig. 2(b)) reveals the chemical composition and the structure of the engineered interface. The chemical map for Sr was not possible to obtain Ref. 4. One can see that the deposition of 2 u.c. of SMO on the TiO2-terminated STO surface results in the formation of a mixed perovskite La – O/(Mn, Ti) – O2 layer at the interface. Note that, interfacial intermixing region of the A-site cations (La and, likely, Sr) consists of about 2 u.c. and is larger than that for B-site cations (Mn and Ti), i.e., ~1 u.c.. For the 8 u.c. thick manganite film (not shown), the La-transition region consists of about 4 u.c., while the Mn-regions remain the same ~1 u.c. The growth of the manganite layer starts with a La–O atomic layer as one can reveal from the shift of La-associated peaks, marked by green color, with respect to those originating from Mn (blue); this shift occurs into the direction of the substrate (Fig. 2(c)). The body of the film can be viewed as three atomic layers of Mn – O2 interpenetrated in between four layers of La–O. The growth of a manganite film according to the scheme: A – O/B – O2/A – O can be more preferable11 as that of A – O/B – O2/B – O2.12

Transport properties of ultrathin LMO films with a thickness of 3 and 8 u.c. are shown in Fig. 3(b). Both films demonstrate a classical CMR behavior, well-known for the doped manganites. The MI transition temperature for the thinnest film consists of \(T_{MI} = 250 \text{K} \) and down to the lowest temperature, \(T = 2 \text{K}, \) the conductivity was of metallic type, i.e., \(dR/dT > 0. \) Relatively high residual resistivity of the 3 u.c. thick film, \(\rho_0 \sim 2 \times 10^{-3} \Omega \text{cm}, \) might be caused by thickness fluctuations and not completely filled top La–O layer. The film with the thickness of 8 u.c. shows bulk-like properties with \(T_{MI} \sim 320 \text{K} \) and residual resistivity, \(\rho_0 \sim 2 \times 10^{-4} \Omega \text{cm}. \) The value of \(T_{C} \) of ultrathin films, determined from the

FIG. 1. STM morphology (a) and TEM low magnification image (b) of a 3 u.c. thick manganite film on the STO(001) substrate. The inset in the top image shows the line profile across the atomic terraces.

FIG. 2. Atomically resolved structure of a 3 u.c. thick film: (a) HAADF overview image; (b) elemental map of the Ti L2,3 (red), La M4.5 (green) and Mn L2,3 (blue); and (c) EELS signal profiles for these ions across the film/substrate interface.
The inset in (a) shows magnetization loops measured at 17°C.

Shapoval et al.

This work was financially supported by the Seventh Framework Program (FP7) IFOX of the EU and STCU Project No. 5390. J.V. acknowledges funding by FP7, ERC Grant No. N246791—COUNTATOMS and ERC Starting Grant No. 278510 VORTEX. The electron microscope was partly funded by the Hercules fund from the Flemish Government. Funding by FP7 under a contract for an Integrated Infrastructure Initiative. Reference No. 312483-ESTEEM2 is also acknowledged.